Circuit Quantum Electrodynamics
Superconducting platform
(fourth Lecture)

Covering: basic concepts, measurement techniques,
implementations, qubit approaches, current trends

With figures and slides borrowed from
A. Wallraff (ETH-Zurich), P. Bertet (CEA Saclay), R. Gross (TU-Munich)



Transmon Limit



Review: The Cooper-pair box (CPB) and transmon

® The CPB consists of a parallel combination
of a capacitor and a Josephson junction.

I
® The circuit looks a lot like the LC oscillator! Ct ] x EJ

e However, there is a key difference:
the inductor of the LC oscillator is here replaced [
by a Josephson junction. ~

e The circuit for a transmon is identical to that of the CPB!

® CPBs and transmons differ only in the characteristic values of the capacitor and junction.

® These circuits are not truly quantum two-level systems.
Rather, they are quantum many-level systems.
For this reason, they are often referred to as artificial atoms.



Review: The Cooper-pair box (CPB) and transmon

Construct the classical Lagrangian: D

o= Single active node

_ I _ (we call this node the
L=E. -k, CPB or transmon island)
s O, I
EE,—ECI(I)t E_=-E, 005(27:50} Ct_ xEJ
Find the variable conjugate to flux: i - (GI’OL:hd nc))de
or reference
dg : =
Qt = Cz(Dt
dd,

Construct classical Hamiltonian:

H(®,0)=00 - £= Ecos{Zx@] %5

2C,

Construct quantum Hamiltonian:
replace variables by operators satisfying canonical commutation relations:

— H_—E cos{27r (Do] Qt [(f)t, At]=ih

2C,

M. Devoret, Les Houches Session LXIII (1995)
Koch et al., Phys. Rev. A 76, 042319 (2007)



Hamiltonian of CPB with voltage bias

Ik
(i) (Q+Cng)2 K
o, J+ 2(C.+C,) Comn X E, =/,

~

H =—F, cos

Is commonly written using other variables: -

- ~

. () - .V .
@t =2r— Nt = —g 1\'72 = b & '.C = ©
D, 2e £ 2e 2(C.+¢C,)
Phase Cooper-pair Number Charging
operator number operator offset energy
\ J ln
| |
Quantum operators These are numbers (not operators!)
H=—F, cos(got)+4Ec(Nr —Ng) I:got,NrjI=—i

Hamiltonian in charge basis

ZL(NYN [+ N4 (V] + 4B (NN, [ N)(V]

A=Y -

N




CPB and transmon regimes

EJ

bl Ni—7(|N)(N+1|+|N+1>(N|)+4EC(N—Ng)2|N>(N|

CPB and Transmon differ only in the regimes of Josephson and charging energies used.

Cooper-Pair Box £,

E./h~E,/h~5GHz E,

E
Transmon B o 8D
E./h~03GHz; E,/h~10-30 GHz E¢



. = E
H::Z_zj(

N

NYY 1|+ N +1){N|)+ 4E. (N =N, )

P\'T> <1\T ‘

N
0

* The Hamiltonian is diagonal in the charge basis.

What are the eigenstates? |IN)

2
What are the eigenvalues? 4E (N — Ng)




E, = 0 (Energy spectrum)

—&— Second-excited state E c / h = 03 GHZ

First-excited state
—&— Ground state

With the Josephson coupling EJ =0

completely turned off,
the eigenstates are simply
the charge states ‘N)

Second-excited state

Their ordering in
energy depends on
the value of the
charge offset.

Frequency (GHz)

Ground state

1.0 05 0.0 05 1.0
courtesy Di Carlo (TU Delft) Charge offset (C,V,/2e)= N,



CPB: E, = E,

—8— Second-excited state
First-excited state
—8— Ground state

The CPB quantum bit 5 5|
consists of the lowest
two energy states

at charge offset Ng=1/2.
2.0;

Frequency (GHz)
o

—
o

0.5}
Large anharmonicity

a = 12_ﬁ11

0.0

Qubit transition: E

—

|

-1.0

courtesy Di Carlo (TU Delft)

05 0.0 0.5
Charge offset (C,V /2e) =N,

1.0

Ly

E./h=0.3 GHz

E, /h=03 GHz

At this charge offset,

the ground and first excited

states are, to a good approximation,
the symmetric and antisymmetric
maximal superposition of

charge states ‘N: O> and |N: l).

|W1>z$

1

[vo) >IN =0)+ |V =)



Intermediate regime: E, > E.

—&— Second-excited state
First-excited slate
—8— Ground state
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) Charge offset (C,V/2€e)
courtesy Di Carlo (TU Delft)

E./h=03GHz

E,/h=3 GHz
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Transmon regime: E; >> E

—®— Second-excited state
First-excited state
—8— Ground state

“10f 7
In the transmon regime,
the energy levels become :
offset. fu=(Ey~E)/h~(BEE; ~2Ec)/h
14}
The anharmonicity is
reduced but not fully ~
eliminated T -16}
e
a = 12_ﬁ11"_Ec/h > W
c 18 T
©
=
O
L
w20t
29| fu=(E~E)/h~(BEE.~E)/h
24}
i :
_ -1.0 05 0.0 0.5 1.0
courtesy Di Carlo (TU Delft) Charge offset (C,,V/2e)

E./h=03GHz

E,/h=30 GHz
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Transition frequencies as a function of E)

Transition frequency (GHz)

®

D

=

o

Very anharmonic but
charge sensitive spectrum

charge insensitive and
weakly anharmonic spectrum

E./h=0.3 GHz ¢¢~chh
| N, =CV,/2¢=0.5 =
///’/// Jou z( 8E\E. _Ec)/h
E /h, ~ fis = (BEEc ~2E )/
y fos =(BE,Ec =3E, )/
VSRS
E. T Ec
! h h
I
; Transition frequencies frequency
/ —o— f5,: Ground to first-excited
—@— f,,: First- to second-excited
—8— f,3. Second- to third-excited
0 10 20 30 40 50
Josephson coupling E /h (GHz)
<> < >
CPB regime Transmon regime

courtesy Di Carlo (TU Delft)
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Wavefunction in the charge basis

1.0F Y 10F ..
Josephson CPB regime
coupling off E,/h=0.3 GHz
05 £ /h=0 05 |

Probability amplitude
g
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Probability amplitude
o
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u ' ] " —— Third-excited state
degenerate at Ny,=0.5 —o— Second-excited state

— — First-excited state
— degenerate at N;=0.5

-JI —e— Third-excited state -
—8— Second-excited state _}
First-excited state L

10 —o— Ground state _ I 10 —e— Ground state
10 5 0 5 10 10 5 0 5 10
Number of Cooper pairs on island N, Number of Cooper pairs on island N,
E./h=0.3 GHz
Ng = Cng /2e=0.5
1.0F T ] 1.0F ; -
Intermediate Transmon regime
: E, /h=3GHz ’

Probability amplitude
(]

o
Probability amplitude
o
(=]

0.5} _e— Third-excited state : 0.5} _e— Third-excited state
—— Second-excited slate —8— Second-exciled slate
First-excited state — First-excited state
—o— Ground state —o— Ground state
-1.0k . PR ; : A -1.0k L PRI, SR SOUO U SO .
-10 -5 0 5 10 -10 -5 0 5 10

courtesy Di Carlo (TU Delft) Number of Cooper pairs on island N, Number of Cooper pairs on island N,
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Important messages

® The charge qubit circuit consists of a parallel combination of a capacitor and a Josephson

junction. Using a Josephson junction as the inductive element (as opposed to a inductor in the
LC oscillator) makes the energy spectrum anharmonic.

e This guantum system has multiple levels, not just two. The anharmonic spectrum helps to
confine the dynamics two a two-level subspace (we will see this later). The two-level subspace
used to define an effective qubit consists of the two lowest-energy levels.

e The two relevant energy scales of the charge-qubit Hamiltonian are the Josephson coupling
energy E, and the charging energy E.. In the Cooper-pair box regime, E,/ E. ~1.
In the transmon regime, E, / E. >~ 30.

e In the CPB regime, a voltage bias is required. The qubit transition frequency at the typical
bias point is approximately £, / /.

e In the transmon regime, the energy levels are insensitive to voltage bias (and also to charge
noise!). The qubit transition frequency is approximately (JEEJ(*’DN}Er —E{-)--’k :
The anharmonicity is reduced but not eliminated, it is approximately —£.. / &.

e Using two Josephson junctions in parallel (as opposed to just one) allows tuning the

Josephson coupling energy and correspondingly the transition frequencies with an applied
magnetic flux.
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Transmon as an anharmonic oscillator

Energy [hw,]
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[ &
. . L
Transmon as an anharmonic oscillator ¢ Sﬁ Csr
=
* Step 1: Write down Lagrangian 5
Transmon
— 4
L=Ecap—Eind=%C C'I>2+E]cos(2nq%> ga
C = Cs+ C = 3
: : . ?2 Aot 2)
 Step 2: Find conjugate variable 258 ——/)1)
_aL_C(D 1 gg;{ hcumi |0>
Q _a_d)_ 0 W) a
* Step 3: Calculate classical Hamiltonian T M2 0 w2 oW
. . 1 o Superconducting phase, ¢
H(P,Q) =Cd? — L(D, D) = ¢ @ — Ej cos (qu)
0

e Step 4: Quantize the Hamiltonian

|®,0] =in H = —E; cos (Zn%) + — Q2 —E; cos (chb ) + 4E, n* n=0Q/2e
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Transmon as an anharmonic oscillator

* What if ® is very very small?
* Question: when does that happen?

H=-E 2(T3+1A2 1;"1052CT)2+1A2
A R T 2\, 2¢c Y

2
_Ejf2m\ =2, 1 A2 _ Ej .o ~D
H_z(cbo)q) +2CQ —2(,0 +4E-n

Harmonic Oscillator

e What if ® is small?

2 4
E; (27 E; (21 1
_ - =2 J =4 A2
H=—|—]| ¢ ——— | O —
2 <CI>0) 24 <CI>0) + ZCQ

L J
T

Non-linear energy term

Lji |
Gt
5
Transmon
— 4
3
P ‘ 2
220, \ hw,i 2)
< 1a¥ — 1)
&4\
185 +/10)

-T -T2 0 /2 Y3
Superconducting phase,qb
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Transmon as an anharmonic oscillator

e Consider the Hamiltonian term:
E] 2T\
24(¢0> *

* Rewrite this term to:
—Katataa — 6aTa + A,

* Hints:
* Keep only “energy preserving” terms
(same number of creation and annihilation operators)

h
A: T T =
d ch(a +a), la,aT] =1

5
Transmon
— 4 '
3,
S 2 1
Q Q
(- @)
w o © +
1 g %{ 01.
O3
0 (Va]
-Tr -1/ 2 0 /2 I

Superconducting phase, ¢
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Transmon as an anharmonic oscillator

2 4
E;, (2m\~ _ 1 . E;, (2m\ _
N ML TCO PSR PRI
e Hamiltonian 2 \P, 2C 24\ D

5
2 Transmon
Ej(2m =9 1 Ao J A2 2
_— — — - — 4
HHO > (CIJ()) P +2CQ > @ +4Ecn 5
C 0 . P /\ — 'g 3
 Conjugate variable [p, 7] =i ) ) = 2)
y 2E,\* i [ B\ > 5 i
By rewriting ¢ = (—C> (at + a), il = —<—]> (at —a) 0 .9 ml% 1)
E, 2 \2E, &g g{ o
) 01y
where aT and a are the rising and lowering operators diagonalizing Hy g 2 ' 0)
0 vy

I -1/ 2 0 /2 iy

* Approximate Hamiltonian Superconducting phase, @
t,_Eeo ot * t,_Ee 4
H ~ \/8E:E;a a—ﬁ(a +a) ~ hwga a——-ala‘aa

W|th h(l)q — 1/8[11(:[11] — EC
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Anharmonic energy spectrum

* With the Hamiltonian hw = \/8EE¢ -
H = hwa'a — E.a’a — éa*a*aa =

h
= hwrata — %a*a*aa

th: ,8E]EC—EC fla=EC
Transmon anharmonicity

Transmon frequency

* Energies:
E1 — EO = h(,() — EC

E, — E, = ho — 2E,

* Because E, — E; # E; — E, we can use as a qubit

5
Transmon
— 4
3
> ‘ 2
gz - hwu? | >
< las — 1)
1| € %{ hw, |
S S 7'10)
0 (Va]
-Tr -Tr/2 0 T2

T

Superconducting phase, ¢
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